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A B S T R A C T

Goal-directed motor behavior is associated with changes in patterns of rhythmic neuronal activity across widely
distributed brain areas. In particular, movement initiation and execution are mediated by patterns of
synchronization and desynchronization that occur concurrently across distinct frequency bands and across
multiple motor cortical areas. To date, motor-related local oscillatory modulations have been predominantly
examined by quantifying increases or suppressions in spectral power. However, beyond signal power, spectral
properties such as phase and phase-amplitude coupling (PAC) have also been shown to carry information with
regards to the oscillatory dynamics underlying motor processes. Yet, the distinct functional roles of phase,
amplitude and PAC across the planning and execution of goal-directed motor behavior remain largely elusive.
Here, we address this question with unprecedented resolution thanks to multi-site intracerebral EEG recordings
in human subjects while they performed a delayed motor task. To compare the roles of phase, amplitude and
PAC, we monitored intracranial brain signals from 748 sites across six medically intractable epilepsy patients at
movement execution, and during the delay period where motor intention is present but execution is withheld. In
particular, we used a machine-learning framework to identify the key contributions of various neuronal
responses. We found a high degree of overlap between brain network patterns observed during planning and
those present during execution. Prominent amplitude increases in the delta (2–4 Hz) and high gamma (60–
200 Hz) bands were observed during both planning and execution. In contrast, motor alpha (8–13 Hz) and beta
(13–30 Hz) power were suppressed during execution, but enhanced during the delay period. Interestingly,
single-trial classification revealed that low-frequency phase information, rather than spectral power change, was
the most discriminant feature in dissociating action from intention. Additionally, despite providing weaker
decoding, PAC features led to statistically significant classification of motor states, particularly in anterior
cingulate cortex and premotor brain areas. These results advance our understanding of the distinct and partly
overlapping involvement of phase, amplitude and the coupling between them, in the neuronal mechanisms
underlying motor intentions and executions.

1. Introduction

The simple motor act of stretching out your arm to grab a cup of
coffee is mediated by a rich and complex chain of neuronal processes.
What, in essence, may seem as the execution of a straightforward
motor command is, in fact, carried out by a cascade of events ranging

from action selection and planning, to motor execution and monitor-
ing. The neural mechanisms that mediate the transformation of a
person's intentions into actions have been the subject of a thriving body
of research for decades (Ariani et al., 2015; Brovelli et al., 2005;
Desmurget and Sirigu, 2009; Jeannerod, 1994; Kalaska, 2009; Lau,
2004; Paus, 2001; Schwartz, 2016; Snyder et al., 1997). However,
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because the neuronal processes at play can be observed at various
spatial scales, and with different recording techniques, parallel streams
of research have given rise to a rich but fragmented understanding of
the local and large-scale integrative electrophysiological mechanisms
that are involved in motor control.

Both human and non-human primate research provides solid
evidence that goal-directed motor behavior is associated with changes
in the patterns of rhythmic neuronal activity across largely distributed
brain areas (Schnitzler and Gross, 2005). Movement initiation and
execution are mediated by patterns of synchronization and desynchro-
nization that occur concurrently across distinct frequency bands and
within multiple motor cortical areas (Cheyne et al., 2008; Jurkiewicz
et al., 2006; Pfurtscheller et al., 2003; Saleh et al., 2010).

To date, motor-related local oscillatory modulations are by and
large examined by quantifying increases or suppressions in spectral
power (Cheyne et al., 2008; Jurkiewicz et al., 2006; Pfurtscheller et al.,
2003; Saleh et al., 2010). However, beyond band-limited oscillatory
power, other spectral properties, namely phase and phase-amplitude
coupling (PAC), are also thought to play a key role in neuronal
encoding and information processing. The involvement of phase
information in neuronal encoding has been extensively investigated
in numerous perceptual modalities and higher-order cognitive tasks
(Drewes and VanRullen, 2011; Dugue et al., 2011; Jensen et al., 2014;
Klimesch et al., 2008, 2007; Montemurro et al., 2008; Palva and Palva,
2007; Sauseng and Klimesch, 2008; Sherman et al., 2016; VanRullen
et al., 2011). In comparison, the role of phase and phase-based
measures mediating motor processes are still insufficiently studied.
Interestingly, a few studies provide evidence for the involvement of
low-frequency phase and amplitude in the neuronal encoding of
movement features (Hammer et al., 2016, 2013; Jerbi et al., 2011,
2007; Milekovic et al., 2012; Miller et al., 2012; Waldert et al., 2009,
2008). Nevertheless, the spatial, temporal and spectral dynamics of
putative phase coding in the chain of processes are still largely
unresolved: starting from goal encoding, to motor planning and motor
command execution.

Recent years have witnessed a surge in interest in the putative
mechanistic function of PAC (Cohen et al., 2008; Hemptinne et al.,
2013; Lee and Jeong, 2013; Newman et al., 2013; Voytek, 2010,
Bahramisharif et al., 2013), and numerous measures of PAC have been
proposed (Canolty, 2006; Nakhnikian et al., 2016; Tort et al., 2010;
Voytek et al., 2013, Özkurt, 2012). Conceptually, PAC may provide a
flexible framework for information processing by means of cross-
frequency synchronization (Canolty and Knight, 2010; Hyafil et al.,
2015; Maris et al., 2011; Staresina et al., 2015; van der Meij et al.,
2012; Weaver et al., 2016). However, despite important advances
(Hemptinne et al., 2013; Özkurt and Schnitzler, 2011; Soto and Jerbi,
2012; Yanagisawa et al., 2012), the precise role of PAC in mediating
motor planning and execution is not yet fully resolved. Specifically, the
distinct functional roles of phase, amplitude and PAC estimates during
motor behavior remain generally ill-defined.

In the present paper, we compare the involvement of all three of
these features using multi-site intracerebral depth electrode recordings
from human subjects performing a delayed motor task. Using high
spatial, spectral and temporal resolution, we monitored modulations of

neural activity, not only at movement execution but, also, during the
delay time-window when motor intention is present but execution is
withheld. In addition to standard statistical comparisons, we used a
single-trial classification procedure (supervised learning) to identify
the key contributions of three distinct oscillatory features (phase,
amplitude and PAC) to the various motor-related processes along the
chain of processes, from goal encoding to movement execution.

2. Material and methods

2.1. Participants

Six patients with medically intractable epilepsy participated in this
study (6 females, mean age 22.17 ± 4.6). The patients were stereo-
tactically implanted with multi-lead EEG depth electrodes at the
Epilepsy Department of the Grenoble Neurological Hospital
(Grenoble, France). In collaboration with the medical staff, and based
on visual inspection, electrodes presenting pathological waveforms
were discarded from the present study. All participants provided
written informed consent, and the experimental procedures were
approved by the Institutional Review Board, as well as by the
National French Science Ethical Committee. Patient-specific clinical
details can be found in Table 1.

2.2. Electrode implantation and stereotactic EEG recordings

Each patient was implanted with stereotactic electroencephalogra-
phy (SEEG) electrodes. Each one of these had a diameter of 0.8 mm
and, depending on the implanted structure, was composed of 10 to 15
contacts that were 2 mm wide and 1.5 mm apart (DIXI Medical
Instrument). Intracranial EEG signals were recorded from a total of
748 intracerebral sites across all patients (126 sites in each participant,
except for one patient who had 118 recording sites). At the time of
acquisition, a white matter electrode was used as reference, and data
was bandpass filtered from 0.1 to 200 Hz and sampled at 1024 Hz.
Electrode locations were determined using the stereotactic implanta-
tion scheme and the Talairach and Tournoux proportional atlas
(Talairach and Tournoux, 1993). The electrodes were localized in each
individual subject in Talairach coordinates (based on post-implanta-
tion CT), and then transformed to standard MNI coordinate system
according to standard routines and previously reported procedures
(Bastin et al., 2016; Jerbi et al., 2010, 2009; Ossandon et al., 2011).

2.3. Delayed center-out motor task

After a rest period of 1000 ms, the participants were visually cued
to prepare a movement towards a target in one of four possible
directions: up, down, left or right (Planning phase). Next, after a
1500 ms delay period, a Go signal prompted the subjects to move the
cursor towards the target (Execution phase). The Go signal consisted of
a central cue changing from white to black. Fig. 1B shows the task
design.

Table 1
Patient data: handedness, age, gender, and description of epilepsy type, etiology, as determined by the clinical staff of the Grenoble Neurological Hospital, Grenoble, France. The lesions
(if any were observed) were determined based on the T1 images. Recording sites with epileptogenic activity were excluded from the analyses.

Handedness Age Gender Epilepsy type Etiology EZ localization Lesion

P1 R 19 F Frontal Secondary Precentral gyrus (RH) Dysplasia
P2 R 23 F Frontal Cryptogenic Precentral gyrus (LH) Absent
P3 R 18 F Frontal Cryptogenic Fronto-basal (RH) Absent
P4 R 18 F Frontal Idiopathic Fronto-central (RH) Absent
P5 R 31 F Insula Secondary Operculum (RH) Cavernoma
P6 R 24 F Frontal Secondary Supra-sylvian posterior (LH) Vascular sequelae
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2.4. Data preprocessing

SEEG data preprocessing was conducted according to our routine
procedures (Bastin et al., 2016; Jerbi et al., 2009). These included
signal bipolarization, where each electrode site was re-referenced to its
direct neighbor. Bipolar re-referencing can increase sensitivity and
reduce artefacts by canceling out distant signals that are picked up by
adjacent electrode contacts (e.g. mains power). The spatial resolution
of bipolar SEEG of our electrodes were approximately 3 mm (Jerbi
et al., 2009; Kahane et al., 2006; Lachaux et al., 2003). Next, using
visual inspection and time-frequency explorations of the signal, we
excluded electrodes containing pathological epileptic activity. In addi-
tion, electrodes located close to the extra-ocular eye muscles were
systematically excluded to avoid eye-movement contaminations in our
analyses. The pre-processing led to a total of 580 bipolar derivations
across all participants (The distribution of all electrode sites across
subjects and Brodmann Areas are provided in Supplementary Fig. S1).

2.5. Spectral analyses

We investigated phase, power, and phase-amplitude coupling in
several standard frequency bands defined as follows: very low fre-
quency component (VLFC) [0.1–1.5 Hz], delta (δ) [2–4 Hz], theta (θ)
[5–7 Hz], alpha (α) [8–13 Hz], beta (β) [13–30 Hz], low-gamma (low
γ) [30–60] and broadband gamma (high γ) [60–200 Hz]. The power
features were computed in six bands (δ, θ, α, β, low γ and high γ), the
phase features were extracted for 4 bands (VLFC, δ, θ and α), and the
phase-amplitude coupling was extracted using three combinations (δ, θ
and α for phase and high γ for amplitude). In total, 13 features were
extracted for each SEEG bipolar derivation. Fig. 2 illustrates time and
frequency-domain features extracted from an illustrative iEEG signal in
premotor cortex (BA6).

2.5.1. Spectral power estimation
Band-specific power modulations were computed using the Hilbert

transform. To this end, and to avoid phase shifting, we first filtered the
data in the required band using a two-way zero-phase lag finite impulse
response (FIR) Least-Squares filter implemented in the EEGLAB
toolbox (Delorme and Makeig, 2004). This filter has been used in
several studies where preserving phase is critical (e.g. Kramer et al.,
2008; Cohen et al., 2008; Voytek et al., 2013; Yanagisawa et al., 2012).

Next, we computed the Hilbert transform of the filtered signal and
calculated power by taking the square of the amplitude component
(envelope). For the specific case of high-gamma power, we split the 60–
200 Hz range into multiple, non-overlapping, 10 Hz bands. As in our
previous studies (Hamamé et al., 2014; Perrone-Bertolotti et al., 2012;
Vidal et al., 2014, 2012), broadband gamma power was obtained by
taking the mean of all of the successive 10 Hz wide normalized bands
(Jerbi et al., 2009; Ossandon et al., 2011, Bastin et al., 2016). Although
comparable power estimations were obtained using Morlet wavelets
(e.g. Tallon-Baudry et al., 1996), we chose to use the Hilbert-based
power computation to have a homogeneous methodological framework
across all three features, as the Hilbert method was used to assess
phase and PAC features (see below).

2.5.1.1. Rationale for broadband gamma selection. Motor-related
power modulations in the gamma-band have been observed with
intracranial recordings across a wide range of frequencies extending
up to 180 Hz or 200 Hz (e.g. Leuthardt et al., 2004; Crone et al., 2006;
Miller et al., 2007). Yet, there is also ample evidence in the literature
for prominent motor gamma oscillations within a narrower 60–90 Hz
band, often with peaks around 75 or 80 Hz (e.g. Ball et al., 2008
Cheyne et al., 2008; Muthukumaraswamy, 2010, 2011; Jenkinson
et al., 2013). Because many of these studies were conducted with
EEG or MEG, one might argue that this discrepancy can in part be a
reflection of differences between invasive and non-invasive gamma
investigations. Electrophysiological recordings in non-human primates
have demonstrated that changes in narrow-band gamma oscillations
and in broadband gamma activity can occur simultaneously and that
they are likely to reflect distinct phenomena (Ray and Maunsell, 2011).
We chose to subdivide the gamma band into low gamma (30–60 Hz)
and broadband gamma (60–200 Hz) in part because the latter band
facilitated comparisons of our power results with our PAC findings, as
well as with wide-band gamma power results in the intracranial EEG
literature.

Note that for visualization purposes, cortical mapping of significant
power modulations on the standard MNI brain (e.g. Figs. 3–5) was
done after normalization with respect to a baseline window of 500 ms
during pre-stimulus rest (from −750 ms to −250 ms). The power in
each frequency band was normalized by computing the relative change
compared to this baseline at the same frequency (i.e. subtracting and

Fig. 1. Implantation visualization for the 6 subjects on a 3-D standard (MNI) brain, and the delayed center-out task definition. (A) Depth electrodes representation from top, right and
frontal views. Each subject is associated to a different color. (B) Design of the delayed motor task, where the direction of the movement was instructed at Cue1, and the actual movement
was carried out at Cue 2 (‘Go signal’). The timeline consisted of three periods: rest, a delay period (motor planning/intention), and movement execution. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Oscillatory feature extractions from intracranial EEG (iEEG) signals shown for an illustrative electrode in human premotor cortex (BA6). (A) Event-related potential (ERP)
across the experiment timeline and anatomical location of the electrode. (B) Trial-by-trial raw iEEG signals. (C) Phase-locking factor indicating stimulus phase-locking (D) Single-trial
phase shown for the VLFC ( < 1.5 Hz) frequency range. (E) Time-Frequency representation. (F) Trial-by-trial broadband gamma power (60–200 Hz). (G) Phase-amplitude coupling
maps during planning and execution, revealing prominent alpha-gamma coupling present during planning that was absent during execution. (H) Event-related PAC depicts, for the same
electrode, the time course of alpha-gamma PAC.
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dividing by the mean of the baseline).

2.5.1.2. Statistical evaluation of tasked-based power
modulations. Significant power modulations were obtained by
standard two-tailed permutation tests, where power values (across
time and frequency) during the task were randomly permuted with the
corresponding value during baseline. A total of 1000 permutations
were performed yielding a null distribution for the relative power,
providing a minimal p-value of 0.001.

2.5.1.3. Power-based classification. The power features used for
classification were computed as mean power over 500 ms time
windows during planning (250 to 750 ms), execution (2000 to
2500 ms) and (−750, −250 ms) during pre-stimulus rest, where
t=0 ms corresponds to the onset of Cue 1. Note that when decoding
“Exec vs Intention” (Fig. 6C), the single-trial power features used were
first baseline normalized (with respect to the rest period) on a trial-by-
trial basis. However, no such baseline-based feature normalization was
possible when running classifications where the rest window was itself
one of the classes (i.e. “Exec vs Rest”, “Intention vs Rest” and the 3-
class decoding “Exec vs Intention vs Rest”, Fig. 6 panels A, B and D).
While decoding results with and without baseline normalized features
(for Execution vs Intention) were very similar, the normalized features
appeared to provide more reliable decoding. This could be in part due
to a beneficial effect of feature normalization on classifier performance.

2.5.2. Phase estimation
To extract phase features in a given frequency band, we first applied

a bandpass filter to the bipolarized signals. Next, we extracted the angle
of the complex time-series based on the Hilbert transform. This gave
the instantaneous phase for all time points. Phase was extracted using
the same type of filter as the one used to extract spectral power.

2.5.2.1. Statistical evaluation of tasked-based phase modulations. we
used Rayleigh's test to compute significant phase modulations
(Babiloni et al., 2002; Lakatos, 2005; Tallon-Baudry et al., 1996),
using the circular statistics toolbox (Berens et al., 2009).

2.5.2.2. Phase-based classification. For decoding purposes, we
considered instantaneous phase features at −500 ms for rest, 500 ms
for planning and 2250 ms for execution. These time points were chosen
because they correspond to the center of each time window used for
power estimation.

2.5.3. Phase-Amplitude Coupling (PAC) estimation
Different methods for the estimation of PAC have been used in the

literature (Jensen and Colgin, 2007; Canolty and Knight, 2010; Tort
et al., 2010; Soto and Jerbi, 2012; Aru et al., 2015). In order to choose
which method to apply here, we simulated synthetic PAC signals (e.g.
Tort et al., 2010), and tested the behavior of several methods, namely
Mean Vector Length (MVL) (Canolty, 2006), the Height-Ratio (HR)
(Lakatos, 2005), Kullback-Leiber divergence (Tort et al., 2010), and
normalized direct PAC (ndPAC) (Özkurt, 2012). We found that the
tested PAC methods provided very comparable results. The slight
differences arose from applying different normalization or surrogate
procedures to the data. Based on this finding, we chose to use the MVL
method combined with a normalization method, where the surrogate
values were calculated by randomly swapping phase and amplitude
across trials (cf. Tort et al., 2010). In short, the PAC estimation
procedure that was applied can be summarized as follows. First, low-
frequency phase and high-frequency amplitude signals were obtained

by filtering and applying Hilbert transformation in the frequencies of
interest (Canolty, 2006). Being frequency-dependent, the optimal filter
orders were adapted separately for the phase of the slower oscillations
(3 cycles used), and for the amplitude of the faster oscillations (6
cycles), as proposed in previous studies (e.g. Bahramisharif et al.,
2013). Next, surrogate data were generated by randomly swapping the
phase trial data and amplitude trial data (i.e. randomly association of
the high frequency amplitude envelope of a trial with the low-frequency
phase time course of another trial). This procedure was repeated 1000
times. Finally, the normalized PAC value was obtained by normalizing
the MVL by the surrogate data, yielding a z-score. This procedure is in
line with previous PAC studies (Canolty, 2006). This form of statistical
normalization using surrogate data provides a more robust estimate
than non-normalized measures (Özkurt and Schnitzler, 2011).

To visualize the emergence of PAC, we used a combination of
methods: (a) phase-alignment of single-trial time-frequency maps
(Canolty, 2006; Hemptinne et al., 2013), (b) a comodulogram (e.g.
Foster and Parvizi, 2012; Pittman-Polletta et al., 2014), and (c) event
related phase-amplitude coupling (Voytek et al., 2013). When comput-
ing the comodulogram, we used the entire planning and execution
periods (1500 ms for each) in order to maximize the per-trial number
of oscillation cycles for the estimation of PAC.

2.5.3.1. Statistical evaluation of tasked-based PAC modulations. The
statistical assessment of PAC was achieved by comparing the true PAC
values to the null distribution of PAC values, computed using surrogate
data (i.e. random shuffling across trials of phase and amplitude signals,
Tort et al. 2010). A real PAC value, which was higher than the 999th
highest PAC value obtained with surrogate data, was considered
significant at p < 0.001.

2.5.3.2. PAC-based classification. For decoding, we used the
normalized PAC values computed over the entire window of each
condition; in other words [−1000, 0 ms] for Rest, [0, 1500 ms] for
planning and [1500, 3000 ms] for execution. Note here, that by
normalization, we refer to the transformation to z-scores based on
surrogate data, not normalization with regards to pre-stimulus baseline
levels.

2.6. Signal classification

We set out to explore the feasibility of using multi-site human Local
Field Potential (LFP) data (580 bipolar electrode sites) to perform
three types of motor-state classifications: (a) Execution vs Rest, (b)
Intention vs Rest, and (c) Execution vs Intention. We compared the
performance of several classification algorithms (Linear Discriminant
Analysis (LDA), Naïve Bayes (NB), k-th Nearest Neighbor (KNN),
Support Vector Machine (SVM) with linear and Radial Basis Function
kernels and Random Forest). For single features classification, LDA,
NB and SVM all provided similar results. We chose to use the LDA
approach for its speed, which was of particular importance given the
computationally-demanding permutation tests used to evaluate classi-
fier performance.

2.7. Decoding accuracy and statistical evaluation of decoding
performance

Classification performance was evaluated using standard stratified
10-fold cross-validation. First, the data set was pseudo-randomly split
into 10, equally-sized, observations: 9 segments were used for training
the classifier, and the last one as the test set. This procedure was
repeated 10 times, such that every observation in the data was used
exactly once for testing, and at least once for training, but never at the
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same time. This strict separation of training and testing was critical to
ensure the test data was naïve and did not violate basic classification
principles (Lemm et al., 2011). The use of stratification seeks to ensure
that the relative proportion of labels (or classes) in the whole data set is
reasonably preserved within each of the segments after the split. The
above procedure was repeated 10 times to reduce the effect of the
random generation of folds, yielding a 10 times 10-fold cross-valida-
tion framework. Next, the performance of the achieved decoding was
calculated using the decoding accuracy (DA) metric, which was
computed as the mean correct classification across all folds. Although
the use of theoretical chance-levels (e.g. DA=50% for binary classifica-
tion) can provide some useful indication on classifier performance in
the presence of a high number of observations, the use of statistics is
mandatory in order to assess the significance of classification perfor-
mance (Combrisson and Jerbi, 2015). To this end, we used a
permutation testing framework where the cross-validation and DA
calculations were recomputed after randomly shuffling the labels of the
classes. For each site and for each type of feature (i.e. power, phase and
phase-amplitude coupling), 1000 permutations were generated, thus
allowing for statistical assessments with p values as lows as 0.001
(Combrisson and Jerbi, 2015; Ojala and Garriga, 2010, Golland and
Fischl, 2003; Meyers and Kreiman, 2012).

2.8. Data mapping to a 3-D standard cortical representation

To facilitate the interpretation of the results, all significant task-
based feature modulations and decoding results were remapped from
the intracranial electrode sites onto a standard cortical representation.
To achieve this, all electrode coordinates were transformed from
individual Talairach space to standard MNI space, and custom
Matlab code was written to project the data from SEEG sites onto
the cortical surface. In practice, data from the iEEG electrodes were
assigned to the vertices on the MNI cortical mesh that fell within a fixed
radial distance of 10 mm from each electrode. This cortical representa-
tion technique is methodologically consistent with methods used in
previous iEEG studies (Bastin et al., 2016; Jerbi et al., 2009; Ossandon
et al., 2012). In addition to generating brain-wide visualization of all
significant features and decoding performances, this method was also
used to display the cortical coverage provided by all the electrodes in
this study (dark gray areas in Fig. 2A). Note that, by convention, the left
hemisphere (LH) is presented on the left in all brain visualizations
(Figs. 3 to 5). Furthermore, these 3D cortical maps of task-based
feature modulations only show contralateral effects; if the patients were
implanted in the left hemisphere (LH), we used data obtained using the
right hand and vice versa. For the two patients who were implanted
bilaterally we kept the right hemisphere (RH) electrode data when
analyzing left hand movements, and the LH electrodes for analysis of
right hand movements.

3. Results

The frequency domain analysis of the 580 intracranial bipolar
recordings across all participants revealed that the delayed motor task
was mediated by complex patterns of spectral modulations across
widely distributed brain areas. Fig. 2 illustrates task-related modula-
tions of amplitude, phase and phase-amplitude coupling measured by a
recording site in premotor cortex (BA6) in one participant. The ERP
and single-trial raw iEEG recordings for this electrode are shown in
panels 2A and 2B, respectively. Panels 2C and 2D depict the phase-
locking factor and a trial-by-trial phase representation across time. The
illustrative time-frequency map (Fig. 2E) depicts a typical power
modulation pattern, where movement execution was associated with
a strong increase in broadband gamma power, and simultaneous power
suppression in the alpha, beta and low-gamma frequency bands. The
delay period (between Cue1 and Cue2) at this site showed a different
pattern of power increases at slow frequencies in the delta to alpha

range. Because of the high signal-to-noise ratio (SNR) of the intracra-
nial EEG recordings used, it is possible to estimate broadband gamma
(60–200 Hz) power on a trial-by-trial basis (Fig. 2F). The PAC maps in
Fig. 2G illustrate the changes in PAC values for the same recording site
across motor planning and execution. A peak in PAC between alpha
phase and high gamma amplitude was observed during the pre-
movement delay period, this feature vanishes during execution, when
the maximum PAC was observed between delta phase and low-gamma
amplitude. The predominance of the alpha-gamma coupling in the
delay period was also confirmed when the time-frequency (TF) maps
were computed by realigning the single-trial TF maps to alpha phase in
the vicinity of the cue (results not shown). Finally, time-resolved,
event-related, PAC estimations (Fig. 2H) revealed the existence of an
alpha-gamma coupling specific to the delay period. These oscillatory
feature estimations were primarily presented as an illustration of the
wide variety and high SNR of the features explored in this study, using
averaging over trials and, most importantly, in trial-by-trial mode. In
the following section, we discuss the global results obtained using data
from all participants. First, we describe the task-based oscillatory
modulations, and then we examine the results of the data-mining
approach.

3.1. Task-based Spectral power modulations

The cortical mapping of power modulations during the delay period
and motor execution reveal distinct patterns of increases and decreases
across the various frequency bands ( Fig. 3). As one would expect from
previous, invasive, reports in humans (Crone et al., 1998; Crone et al.,
2006; Babiloni et al., 2016; Bundy et al., 2016; Rektor et al., 2006), our
results confirmed that motor execution is associated with prominent
suppressions of alpha/mu and beta band powers, and with increases in
high gamma power, primarily in motor and premotor cortices.
Moreover, the power modulations shown in Fig. 3 are indicative of
significant task-based modulations beyond these areas, extending to
parietal, prefrontal and cingulate areas. When comparing the brain-
wide significant power changes for both planning and execution, we
first observed a large degree of overlap between the statistically
significantly active areas in both conditions. Second, two distinct
patterns appeared to emerge when we examined the direction of the
effects across frequency bands: the alpha, beta and low-gamma bands
showed a reversal of the effect, from a significant increase during
planning to a significant suppression during execution. By contrast, the
remaining bands (delta, theta and high gamma) displayed a consistent
significant power increase during both the planning and execution
periods, with a stronger effect at the execution of the movement. Of
note, high-gamma increases were prominent over multiple frontal and
prefrontal brain areas bilaterally, with strong peaks in motor and
premotor cortices during execution. Most of these areas also showed a
significant increase of power above baseline levels during the delay
period, potentially related to movement goal-encoding and motor
planning processes.

3.2. Task-based phase modulations

The patterns of statistically significant changes in phase revealed a
predominant effect in the lower frequencies ( Fig. 4). In particular, the
VLFC range (i.e. < 1.5 Hz) showed consistent phase values in primary
motor cortex (with a reversal in sign between planning and execution,
at the given time instants). Interestingly, although less prominent,
consistent phase effects were also found in the theta and alpha bands,
predominantly in prefrontal areas. The significant delta phase angle
over primary motor cortex during execution is in line with earlier
reports on delta-range coherence between motor cortex and movement
parameters (Jerbi et al., 2007).
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3.3. Task-based PAC modulations

Statistically significant levels of phase-amplitude coupling were
observed in multiple brain areas and with very similar distributions at
execution, and during the delay period in the absence of movement (
Fig. 5). In fact, our results suggest higher PAC during the goal-encoding
and planning phase than during movement execution. The most
prominent PAC effects in primary motor cortex were obtained for
alpha-gamma interactions, but were only present during the planning
period. This alpha-gamma PAC in primary motor cortex (M1) virtually
disappeared at the time of execution. Interestingly, it was replaced by
an M1 delta-gamma PAC during motor execution. In addition, as
shown in the right panel of Fig. 5, depth recordings in the medial wall

revealed statistically significant PAC in anterior cingulate cortex (ACC),
in particular, cingulate motor cortex (CMA, BA32) and in medial
premotor areas, specifically in supplementary motor area (SMA, BA6)
for three slow-frequency bands (delta, theta and alpha). These PAC
modulations are likely to reflect the involvement of SMA and cingulate
motor areas in action selection, planning, execution, and inhibition.

3.4. Single-trial decoding of motor processes using machine learning

The application of a supervised learning framework allowed us to
determine which features, among those discussed above, were useful
for single-trial decoding of motor states (binary classification applied
pairwise to rest, planning and execution states, as well as a three-class
decoding of rest, planning and execution). This was achieved using a
cross-validation approach in which a classifier was repeatedly trained
on a subset of the data and, then, tested on previously unseen single-
epoch observations (test set). This method allowed us to quantify the
decoding strength of each feature with a percent correct classification
rate.

Fig. 6 depicts mean decoding accuracies (DA) achieved with each
feature (power, phase, PAC) across all frequency bands, and all
Brodmann areas for which recordings were available (The same
significant results pooled by feature, but averaged across Brodmann

Fig. 3. Task-related modulations of spectral power during planning and execution of
upper limb movements. The color bars represent percent relative changes (%) of power
during planning (250–750 ms) and during execution (2000-2500 ms), with respect to
baseline power during pre-stimulus rest (−750 to −250 ms). The power modulations are
shown for delta (2–4 Hz), theta (5–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), low-
gamma (30–60 Hz) and broadband gamma (60–200 Hz). All modulations shown were
statistically significant (permutation tests, p < 0.05, FDR-corrected). Dark gray areas
represent cortical regions for which electrode coverage was available but, where the
modulations did not reach statistical significance. By convention, the left hemisphere
(LH) is presented on the left.

Fig. 4. Task-related modulations of instantaneous phase during planning and execution
of upper limb movements. The color bars represent mean phase computed at 500 ms
(planning) and at 2250 ms (execution), which corresponds to the centers of the windows
used for power (Fig. 3). Phase modulations were computed for very low frequency
component (VLFC) ( < 1.5 Hz), delta (2–4 Hz), theta (5–7 Hz) and alpha (8–13 Hz)
bands. All modulations were statistically significant (Rayleigh's test), based on the
circular statistics toolbox (Berens et al., 2009), p < 0.001. Dark gray areas represent
cortical regions for which electrode coverage was available but, where the modulations
did not reach statistical significance. By convention, the left hemisphere (LH) is
presented on the left.
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areas are available in Supplementary Fig. S2). The bar plots above each
panel depict the highest decoding accuracies obtained with each
feature, and the Brodmann area in which it was observed. The bar
plots on the right side of each panel indicate the number of significant
features present in each Brodmann area. It is noteworthy that all three
feature types (amplitude, phase and PAC) computed across many
frequencies, and most of the probed brain areas, contained to variable
degrees discriminant information on motor states (All results in Fig. 6
represent statistically significant results using permutation tests cor-
rected for multiple comparisons using maximum statistics, p < 0.05).

3.4.1. Classification similarities between Execution vs Rest and
Intention vs Rest

The highest percentages of correct prediction were obtained when
classifying Rest vs. Execution (as high as 94.9% on single-trial
classifications). A high degree of similarity was observed between the
decoding patterns for Execution vs Rest (Fig. 6A), and Intention vs
Rest (Fig. 6B). In principle, most of the features that provided
significant decoding of Execution vs Rest, also provided significant
decoding of Intention vs Rest. The features that yielded the highest
discrimination in both cases primarily involved spectral power in beta,
low-gamma, and broadband gamma bands, in addition to phase in the
very low frequency range ( < 1.5 Hz). The most prominent brain areas
involved in both types of decoding were BA 4, 6, 8, 9, 13, 32 and 40.
These were the regions that contained the highest number of signifi-
cantly decoding sites (gray histograms), and these were also the BAs
that yielded the highest levels of decoding accuracy. The highest DA
performances reached 94.9% (VLFC phase in premotor cortex) when
decoding Execution vs Rest, and 91.3% (VLFC phase in inferior parietal
cortex, BA40) in the case of Intention vs Rest.

3.4.2. Classification differences between Execution vs Rest and
Intention vs Rest

Although the decoding matrices in Fig. 6A (Execution vs Rest) and
6B (Intention vs Rest) show a high degree of similarity, there were also
notable differences between the two. First, many more significant sites
were obtained in the case of Execution vs Rest (cf. gray bar plots on the

right of each matrix). Furthermore, the low frequency phase in BA 40
played a more central role in distinguishing intention from rest, than
movement execution from rest. This could be in line with what is
known about the role of the inferior parietal lobe in motor planning
(Caspers et al., 2008; Mattingley et al., 1998; Rushworth et al., 2001).
In addition, power-based classification results showed that, while
primary motor (BA4) and premotor areas (BA6) were important in
predicting execution, the most noticeable intention-decoding power
features were recorded from BA9, 13 and 32 (top histogram in Panel
6B). This is consistent with what is reported in the literature on the
involvement of BA9 in the processes of working memory, executive
planning and behavioral inhibition. Among other things, the important
decoding levels in BA13 could be related to the role of insular cortex in
motor planning (Lacourse et al., 2005; Stephan et al., 1995).
Remarkably, the best PAC-mediated decoding of Intention vs Rest
was obtained with delta-gamma coupling in the dorsal anterior
cingulate cortex (dACC, BA32, DA=70,1%). This prominent PAC in
ACC is consistent with the role of this brain region in motor inhibition,
visuo-patial attention, motor planning and imagery (Cheyne et al.,
2012; Jahanshahi et al., 1995; Paus, 2001). To the best of our
knowledge, this is the first report of a motor-related delta-gamma
PAC modulation in ACC.

3.4.3. Classification of Execution versus Intention
The decoding matrix of sub-Fig. 6C shows a markedly different

pattern for Execution vs Intention. Because of the similarity between
the neuronal responses in both conditions (cf. previous sections), the
differences are subtle and, as a result, the decoding performances are
lower than those reported for the Execution vs Rest, or Intention vs
Rest classifications. In addition, in this comparison, fewer brain areas
allowed for statistically significant decoding. Interestingly, among all
features, the one that provided the best discrimination between the
intention period and the execution period was the phase of the very low
frequency range ( < 1.5 Hz), which yielded a decoding peak of 88.9% in
BA 8. The second best decoding feature was broadband gamma with a
decoding that peaked at 83.5% in the posterior insula (BA13).
Moreover, the premotor cortex (BA6) appeared to be overall the most

Fig. 5. Task-related modulations of phase-amplitude coupling during planning and execution of upper limb movements (Left panel: top view, Right panel: medial view). The color bars
represent mean PAC modulation index (MI), quantifying the co-modulation of broadband gamma amplitude (60–200 Hz) with delta (2–4 Hz), theta (5–7 Hz) and alpha (8–13 Hz)
bands. All modulations shown were statistically significant (p < 0.001, surrogate data), and are estimated from the entire planning and execution time windows. Dark gray areas
represent cortical regions for which electrode coverage was available but, where the modulations did not reach statistical significance. By convention, the left hemisphere (LH) is
presented on the left.
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Fig. 6. Single-trial classification of motor states (pre-stimulus rest, intention and execution) using the features of power, phase and PAC. (A) Execution vs Rest, (B) Intention vs
Rest (C) Execution vs Intention (D) Execution vs Intention vs Rest. The decoding matrices depict the mean percent decoding accuracies (DA) for all statistically significant features,
across all frequency bands (x-axes) and across all Brodmann Areas in which recordings were available (y-axes). Yellow on the color-bar indicates 100% DA, the lower bounds of the color
bars correspond to the chance levels of 50% in the pairwise decoding (A-C) and 33% in the 3-class decoding (D). Only statistically significant decoding accuracies are reported (p < 0.05,
permutation test, corrected via maximum statistics). The bar plots above each panel show the highest DA obtained with each feature (red: power, blue: phase, and green: PAC), as well as
the Brodmann area whee it was observed. The gray bar plots on the right side of each panel indicate how many statistically significant features were found in each Brodmann area (note
that the upper bounds on the y-axes of these bar plots differ across panels). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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prominent area for Execution vs Intention decoding, providing the
largest number of statistically significant sites and features. This is in
line with the established involvement of the premotor cortex in motor
execution, planning and imagery, as well as visuomotor and visuospa-
tial attention (Ball et al., 1999; Gallivan et al., 2013; Hanakawa et al.,
2008; Miller et al., 2010). Finally, the data showed that delta-gamma
and alpha-gamma provided the best PAC decoding (respectively in BA4
and BA6) cortices (Fig. 6C), while theta-gamma coupling did not
provide significant decoding. This finding is best explained by the
significant decoding accuracy (in these areas) of delta-gamma and
alpha-gamma observed in Execution vs Rest (Fig. 6A) and Intention vs
Rest (Fig. 6B), respectively.

3.4.4. Three-class decoding: Execution versus Intention versus Rest
Three-class decoding results (Fig. 6D) provide results that are very

similar to those observed in the pair-wise comparisons. The peak
decoding was obtained with the VLFC feature in BA6 (79,8%, with a
theoretical chance level at 33%). This result confirms the decoding
results observed in the pair-wise decoding (Fig. 6A-C). The second and
third best results also originate from sites in premotor area (BA6),
respectively with the beta and low-gamma power.

4. Discussion

4.1. Summary of findings

Previous reports have reported complex patterns of overlap and
segregation between the networks of brain areas involved in action
representation, planning and execution (e.g. Jeannerod, 1994; Stephan
et al., 1995; Hanakawa et al., 2008; Guillot et al., 2012;) So far,
electrophysiological explorations of these patterns in humans have
focused on modulations of rhythmic activity, primarily measured
through spectral power modulations. Using direct recordings in hu-
mans performing a delayed motor task, we provide by the present
article an intracranial investigation of the similarities and discrepancies
between activations in areas involved in the preparation of action, and
those that actually mediate movement execution. To the best of our
knowledge, this study provides the first account of these key brain
dynamics through a systematic investigation of the roles of phase,
amplitude and phase-amplitude coupling across widely distributed
brain areas (extending beyond primary motor areas), and across a
wide range of frequencies (up to 200 Hz). Furthermore, in addition to
statistical comparisons, an important addition of this study was the use
of supervised learning and a single-trial classification framework as
ways to assess the distinct and overlapping information content of
these features.

4.2. Planning and execution are associated with prominent phase,
amplitude and PAC modulations

Our analyses of task-based modulations revealed spatially distrib-
uted patterns of statistically significant changes in power, phase and
PAC, both during the delay period and following the execution cue.
Large amounts of overlap were uncovered between the significant
modulations observed in the planning processes and those in move-
ment execution. In task-based power changes, significant increases in
the delta, theta and broadband gamma bands were present during the
planning phase and were further enhanced at the time of execution. By
contrast, alpha, beta and low-gamma power showed a rather consistent
pattern of inversion, from increases following the preparation cue to
decreases following the execution cue. These activation pattern findings
in intention and execution echo previously reported similarities and
differences between motor imagery and motor execution. In particular,
action representation and motor inhibition were likely to be common
to, both, the delay period of the task, and to motor imagery tasks
(Stephan et al., 1995). Phase and PAC also displayed similar patterns of

responses for action preparation and execution, although they were
also indicative of clear discrepancies in motor areas, such as prominent
alpha-gamma coupling during planning, but delta-gamma coupling
during execution. Although not spatially exhaustive, the reported pre-
and peri-movement modulations in power, phase and PAC were
observed over large parts of parietal, frontal and prefrontal areas,
including medial areas, such as the dACC. Moreover, while the reported
power modulations were largely consistent with previous iEEG reports
(Crone, 1998; Crone et al., 2006, 1998; Pfurtscheller and Lopes da
Silva, 1999), the wide-spread significant modulations of phase and PAC
effects during the delay-period and movement execution are, to our
knowledge, novel findings that extend the current understanding of
their role in mediating motor behavior.

It is noteworthy that the PAC observations reported here are partly
consistent with those of an earlier ECoG study (Yanagisawa et al.
2012). By computing cross-frequency coupling in electrodes implanted
in motor areas, the authors found that high-gamma amplitude during
waiting was strongly coupled with; alpha phase. However, this alpha-
gamma PAC was not predictive of movement type and was strongly
attenuated towards the timing of motor execution. Similarly, we found
prominent motor alpha-gamma PAC during the delay period, which
then disappeared during movement execution. Interestingly, in our
dataset, the alpha-gamma coupling during the planning was replaced
by a delta-gamma coupling at execution. In addition, our data provide
evidence for PAC modulations across wider brain areas, beyond
primary motor areas.

Future studies might not only benefit from investigating brain
activation dynamics through the role of phase, amplitude and phase-
amplitude coupling during motor intention and execution, but also
during explicit mental simulation of the same movement.

4.3. Decoding patterns reveal functional overlap and discrepancies
across phase, amplitude and PAC

The machine learning framework allowed for deeper investigation
of the role of our features through the assessment of their decoding
accuracy. Most importantly, the classification strategy extended the
standard statistical analyses by switching from comparisons of means
to the evaluation via cross-validation of the predictive power of the data
computed from single-trials; once trained, the classifier was individu-
ally applied to each single-trial of the test set. In other words, the mean
decoding performances reflected the ability of each feature to discri-
minate between the conditions (Rest, Intention, Execution) on single
samples of data. Taken together, the decoding analyses provide a rich,
multi-dimensional, exploration of the functional involvement of phase,
amplitude and phase-amplitude in motor behavior. The main findings
can be summarized as follows. First, the slow frequency phase achieved
the highest DAs across all classifications; Our results revealed its
prominent role primarily in inferior parietal areas (DA > 90%). Second,
we provide evidence fo significant decoding using phase-amplitude
coupling in dACC (DA > 70%) during the delay-period preceding motor
execution. Third, the performance of power features dropped substan-
tially in the condition Intention vs Rest (below 77%) compared to
Execution vs Rest (ca. 90%). During planning, the best power-based
decoding levels were observed in prefrontal regions (BA9, 13, 32, 40
and 45), while execution decoding using power revealed strong
classifications in BA4, 6, 8 and 9, including precentral and premotor
regions. Finally, we showed that when it comes to directly distinguish-
ing the neuronal correlates of execution from those mediating inten-
tion, the highest classifications (among all explored regions) were
achieved either with the phase of the very low frequency range ( <
1.5 Hz) in BA8 (DA > 88%), or with broadband gamma power (60–
200 Hz) in the posterior insula (DA > 83%).
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4.4. Relationship with previous electrophysiological findings

Overall, the present analysis of intracranial human data provides
strong evidence for a key role of phase and phase-amplitude relation-
ships in motor goal encoding, and execution. These original findings
extend previous invasive electrophysiological studies in humans that
have investigated the correlates of motor intention and/or execution.
For the large part, such studies were primarily based on the estimation
of cortical power modulations in multiple frequency components of the
LFP, including beta and gamma range power modulations (Leuthardt
et al., 2004; Crone et al., 2006; Miller et al., 2007; Gunduz et al., 2016).
Nevertheless, there is some evidence suggesting a critical role for low-
frequency phase and amplitude information in mediating movement
parameters (Hammer et al., 2016, 2013; Jerbi et al., 2011, 2007;
Milekovic et al., 2012; Miller et al., 2012; Waldert et al., 2009, 2008;
Kajihara et al., 2015; Liu et al., 2011). Using ECoG recordings in
epilepsy patients, Hammer and colleagues (2013) directly addressed
the role of phase information in decoding movement kinematics (i.e.
position, velocity, and acceleration). By separately exploring kinematics
decoding with spectral amplitudes and phase of the low frequency
component (LFC), the authors came to the conclusion that the ECoG
LFC phase was in fact much more informative than amplitude
(Hammer et al., 2013).

In theory, it is conceivable that our single-trial decoding in the low
frequency range (e.g. VLFC decoding) is driven at least in part by the
presence of phase-locking across trials.

For instance, our decoding results may be related to the presence of
a Bereitschaftspotential (BP), since the latter varies with movement
states and parameters (Birbaumer et al., 1990; Shibasaki and Hallett,
2006). A consistent phase-locking across trials related to such slow
cortical potentials may substantially contribute for instance to the high
VLFC phase decoding we observed. A key question is whether this
VLFC phase feature provides higher decoding then the envelope or the
low-pass filtered raw signal in the same frequency range. To address
this interesting question, we conducted additional decoding analyses
where we directly compared decoding performance (across all available
data) with the 3 following types of features (a) low-pass filtered [0.1
1.5 Hz] raw signal, (b) [0.1 1.5 Hz] phase (VLFC) and the (c) [0.1
1.5 Hz] envelope. The results (Fig. 7) suggest that the phase of the low-
frequency signal contains more relevant information than its envelope
in terms of decoding. When contrasted to the low-pass filtered signal,
the phase provided either comparable or higher (cf. planning vs rest)
motor state decoding. Note that these results were obtained in single
trial classification (as is the case with all the rest of our analyses). These
findings imply that single-trial low-frequency components (which
contribute, when averaged, to generating motor-related potentials)
provide significant motor state decoding performances. Our results
(Fig. 7) indicate that this low-frequency decoding appears to be, on a
trial-by-trial basis, primarily driven by the phase of the low-pass signal,
rather than its envelope.

A recent study demonstrated that the LFC signal may be more
adapted to speed decoding than to velocity decoding (Hammer et al.,
2016). These findings are globally in line with reports of low frequency
range coherence ( < 4 Hz) between limb speed and the activity of the
primary motor cortex during continuous movements (Jerbi et al.,
2007). Moreover, movement direction classification has been achieved
with significant success using the LFC component, both, with invasive
and non-invasive brain recordings (Jerbi et al., 2011; Waldert et al.,
2009, 2008).

Our observation of the efficacy of low frequency brain signals in
motor decoding is consistent with a few animal studies that have
revealed a prominent role for frequencies ( < 5 Hz) LFP components in
decoding motor movements via recordings in primary motor and
parietal cortices (e.g. Mehring et al., 2004; Averbeck et al., 2005;
Rickert, 2005).

The results of the current study differ from the above reports in

several ways. Firstly, while most studies typically focus on movement
execution, the delayed-motor task used here allowed us to examine the
role of phase information in the motor encoding and planning phase
preceding actual movement execution. Secondly, beyond phase or
amplitude, we performed a systematic exploration of PAC effects and
found that it yielded significant modulations and motor state decoding.
Thirdly, the intracerebral recordings of our subject pool provided a
different spatial sampling compared to most previous electrocortico-
graphic studies. In particular, the recording sites covered widely
distributed brain areas beyond primary and secondary motor areas
(such as parietal, prefrontal and insular cortices), and included some
medial brain areas (e.g. dACC). Moreover, most of the previous
investigations into the role of low frequencies ( < 4 Hz) in movement
decoding relied on the low-pass filtered brain signals. By contrast, we
specifically focused on the phase at these low frequencies, but we also
examined the difference with using the envelope or low-pass filtered
signals (Fig. 7). Therefore, taken together, our exploration of intracra-
nial recording during a delayed motor task confirms and extends the
growing body of evidence for the role of phase and phase-related

Fig. 7. Comparison of maximum decoding performance using 3 features in the same low
frequency band (0.5 1.5 Hz): Low-pass filtered signal (deep blue), low-pass phase (red)
and low-pass envelope (light blue). (A) Maximum decoding achieved with each feature
type, and across the 4 classification problems. (B) Same as in (A) but here mean decoding
across all statistically significant sites. In both panels, theoretical chance levels (50% or
33%) are depicted with continuous lines and the statistical thresholds (p < 0.05,
corrected) are indicated by dashed lines. The low-frequency phase features provide
higher classifications than the low-frequency envelope. The entire low-pass signal (deep
blue) achieves decoding levels closer to those of the phase component. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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measures in encoding motor processes, from intention to execution.
Invasive recordings in patients with motor disorders have been

reported both with ECoG and passive recordings from deep brain
stimulation (DBS) electrodes, in particular in the case of Parkinson's
disease (McIntyre and Thakor, 2002; Litvak et al. 2011; Florin et al.
2013; Beudel et al. 2015; Rowland et al. 2015; Guridi and Alegre,
2016). For instance, the recent intracranial study by Rowland et al.
(2015) bares some similarities with our study since it set out to explore
beta and gamma power changes across rest, movement preparation
and execution in Parkinson's patients. In particular, the authors used
DBS recordings to monitor event-related synchronization and desyn-
chronization associated with rigidity or akinesia in these patients. The
study showed that compared to patients with essential tremor (who do
not show rigidity or akinesia), Parkinson's patients had larger beta
desynchronization in early motor preparation as well as enhanced
cortical broadband gamma power during both rest and task. The
authors interpret the findings as an indication that the dynamic profile
of sensorimotor cortex oscillations in Parkinson's is in opposition with
the anti-kinetic activity of the basal ganglia.

4.5. A key role for phase coding in goal-directed motor behavior

Currently, the overwhelming body of research on the oscillatory
brain dynamics that mediate motor behavior continues to explore local
activations in terms of amplitude modulations, while phase informa-
tion is primarily used in the context of inter-regional connectivity
assessments (da Silva, 2006; Lachaux et al., 1999; Le Van Quyen et al.,
2001; Roach and Mathalon, 2008). Our findings support the view that
phase carries critical information that is often overlooked, and can
provide more task-specific information than spectral amplitude. Thus,
one may wonder about the underlying physiological phenomenon that
could explain the relevance of phase. One potential explanation is that
phase modulations might be closely related to neuronal firing patterns.
Evidence for this hypothesis has been found in non-human primates,
for instance, in auditory and visual cortices (Ng et al., 2013;
Montemurro et al., 2008). In the auditory cortex, stimulus selective
firing patterns have been found to imprint on the phase, rather than the
amplitude, of theta oscillations within both LFPs and EEG data (Ng
et al. 2013). By applying a stimulus decoding technique to intracortical
LFPs and single cell recordings in macaque auditory cortex, the authors
found that the stimuli, which were successfully discriminated by firing
rates, were also discriminated by phase patterns but not by oscillation
amplitude. In visual cortex, information theoretical approaches have
also shown that the combination of spikes and low frequency (1–4 Hz)
LFP phase provide more information on visual stimuli than spikes
alone (Latham and Lengyel, 2008; Montemurro et al., 2008). Similarly,
the timing of action potentials relative to LFP theta phase in the
hippocampus have been found to be more informative about position
(i.e., higher precision) than what could be inferred from firing rate
alone (Dragoi and Buzsáki, 2006; O’Keefe and Recce, 1993).

In the present study, the low-frequency phase decoding results
could be theoretically explained by (and be consistent with) the
hypothesis that the precise relationship between slow LFP phase and
neuronal firing reported in other modalities (as discussed above), also
operates in human motor brain areas during limb movement prepara-
tion and execution. This idea needs to be tested with microelectrode
data allowing for simultaneous access to both LFP and neuronal firing
in human participants. This was not possible with the SEEG data used
for the purpose of this study. Furthermore, the significant modulations
and decoding results reported here, using phase-amplitude coupling,
could be suggestive of a specific mechanism by which phase, broadband
gamma amplitude and neuronal firing are lined up in a precise fashion.
Whittingstall and Logothetis (2009) observed such a phenomenon in
macaque visual cortex, where multi-unit firing responses were found to
be strongest only when increases in EEG gamma power occurred
during a specific phase of the delta (2–4 Hz) wave. It is however

obvious that, the tempting speculation that this may also be at play in
areas where we found significant PAC decoding, cannot be confirmed
without simultaneous monitoring of neuronal firing.

While the notion of phase coding is not new per se, the presented
results extend an emerging body of literature suggesting that phase
coding may play a more important role in motor behavior than
previously assumed. In particular, we found that phase-based motor
state decoding (i) is widely distributed, extending beyond primary
motor areas, (ii) occurs both during action planning and execution, and
(iii) that phase-amplitude coupling could be an additional phase-based
key feature involved in the neuronal coding of goal-directed behavior.

4.6. Limitations and open questions

The results of this study have a number of limitations. Our data,
just like all previous intracranial EEG studies, have limited spatial
sampling of the involved networks. The over 500 intracerebral sites
used here provide only a partial spatial coverage of the brain, with a
more dense coverage of right frontal than left frontal regions (Fig. 1A).
Additionally, a reliable comparison between neural responses contra
and ipsilateral to the moving hand was not possible because 4 patients
out of 6 had uni-lateral implantations, and even for those with bi-
lateral implantation, the electrodes were not located in exact homo-
logous brain areas in both hemispheres. This is a typical limitation of
invasive human data. Clearly, investigating the lateralization of ampli-
tude, phase and PAC phenomena reported here, would greatly benefit
from further investigations with full head coverage using MEG or EEG
and similar delayed-motor paradigms. This said, patients were selected
primarily based on whether they had electrodes implanted in frontal,
prefrontal or parietal areas, thus providing a reasonable coverage of the
targeted networks. Moreover, as in all previous human invasive
recordings, participants suffered from drug-resistant epilepsy, which
could limit the generalizability of the findings to healthy subjects. To
address this in the best possible way, our standard procedure (e.g. Jerbi
et al., 2009) is to exclude electrodes that display pathological activity
(such as epileptic spikes), and to focus on task-related changes and
multi-trial analyses, thereby reducing the impact of neuronal activa-
tions that are spurious or unrelated to the task. Therefore, our findings
could benefit from future replication using non-invasive recordings in
healthy controls.

Note that all the decoding throughout this study was performed on
single-features in single-trial mode, individually in each subject. We
did not use multi-feature classifications, and did not pool all partici-
pants in the decoder. The nature of the individualized SEEG implanta-
tion precludes the possibility to reliably combine data from multiple
subjects into the same cross-validation decoding framework. We chose
to provide an overview of the single-feature findings across BAs (mean
and max significant decoding accuracies, Fig. 6) as a pragmatic way to
pool the multi-subject results. Of course, the decoding accuracies
would have likely been even higher had we chosen to run multi-feature
classification at least within individual subjects. Yet, our aim was not to
achieve the highest decoding rate, rather to use the decoding approach
to unravel and compare the distinct contribution of each feature
individually to motor planning and execution processes.

Furthermore, it is important to acknowledge that our task design
did not allow for a fine-grained disambiguation of the various, distinct,
processes that are expected to take place during the delay period.
Clearly, the delay period encompasses a wide range of processes, such
as stimulus encoding, visuomotor transformations, motor imagery,
action selection, motor preparation, as well as working memory and
maintenance processes. To limit any bias towards visual stimulus
encoding when analyzing the planning/intention period, we deliber-
ately centered our phase and amplitude analyses on 500 ms after target
onset. In future investigations, this limitation should be addressed with
a specific experimental design aimed at disentangling various motor
related processes in the delay period.
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In addition, the Go cue is likely to be immediately followed both by
preparatory and execution signals. Thus, a more detailed analysis of
motor execution would have been possible if we were able to align the
data to movement onset rather than the Go cue. Unfortunately, for
technical reasons movement onset was not available. To limit the
impact of this limitation, we deliberately considered a window in the
execution phase between 500 ms and 1000 ms after the Go Cue, and
thus ignored the 500 ms post-Go period where most of the preparation
is expected to take place. More importantly, because we relied on a
decoding approach to disentangle execution from preparation, we
hypothesized that processes (or feature modulations) common to both
conditions would not allow for significant decoding, and thus by
definition, features with high decoding should reflect differences
between the two states.

Moreover, the physiological interpretations made in the current
study also bare their share of limitations. The way the explored features
(amplitude, phase and PAC) explicitly relate to the notion of informa-
tion processing in the human brain is still poorly understood. Rather
than identifying the precise functional relevance of each feature, our
results emphasized their task-specific modulations and their ability to
successfully predict the state of the system in singe-trial data (i.e. Rest,
motor Planning or motor Execution).

Despite the above limitations, we feel that access to intracerebral
depth EEG recordings in human subjects, provides privileged insight
into the neural dynamics mediating human cognition, with superior
spatial, temporal and spectral precision. In the long run, this type of
data can help bridge the gap between neuroimaging studies and
electrophysiological recordings in non-human primates.

5. Conclusion

The findings of this study provide novel experimental evidence for
the role of oscillatory phase and amplitude properties in motor
planning and execution. In particular, the evidence for phase and
PAC-based coding are a compelling support for the key role of phase in
encoding motor representations and mediating movement execution
across widely distributed brain areas. We are confident that these
results will pave the way for a better understanding of, and novel
hypotheses about, the roles of phase, amplitude, and the coordination
between the two, in goal-directed motor behavior in humans.
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