
  

  

Abstract— Cross-frequency phase-amplitude coupling (PAC) 
within large neuronal populations is hypothesized to play a 
functional role in information processing in a range of cognitive 
tasks. The goal of our study was to examine the putative role of 
PAC in the brain networks that mediate continuous visuomotor 
control. We estimated the cortical activity that mediates 
visuomotor control via magnetoencephalography (MEG) 
recordings in 15 healthy volunteers. We extracted the cortical 
signal amplitudes and phases at the frequencies of interest by 
means of band-pass filtering followed by Hilbert transforms. 
To quantify task-related changes of PAC, we implemented a 
technique based on the Kullback-Leibler divergence. The 
choice of this technique among others was based on the results 
of comparisons performed on simulations of coupled sources in 
various noise conditions. The application of PAC to the MEG 
data revealed a significant task-related increase in coupling 
between the phase of delta (2-5 Hz) and the amplitude of high-
gamma (60-90 Hz) oscillations in the occipital and parietal 
cortices as well as in the cerebellum. Remarkably, when 
comparing PAC in the early trials to PAC recorded towards 
the end of the experiment we found a significant increase in 
delta-high-gamma coupling over time in the superior parietal 
lobule, possibly reflecting visuomotor adaptation processes. 
Our results suggest that, in addition to power modulations, 
cross-frequency interactions play a key role in visuomotor 
behavior. 

 

I. INTRODUCTION 

Phase-amplitude coupling (PAC) of electrophysiological 
signals, which occurs for instance when amplitudes of faster 
oscillations are modulated by phases of slower rhythms, is a 
phenomenon that has been attracting increasing interest 
among neuroscience researchers. Cross-frequency PAC has 
been reported using both invasive and non-invasive 
recordings, and has been studied not only in tests for local 
cross-frequency interactions, but also in the analysis of long-
range coupling [1]. Since high-frequency oscillations are 
usually related to localized cortical information processing, 
whereas low-frequency rhythms can be modulated across 
brain regions by both internal cognitive processing and 
external sensory inputs, it is believed that PAC phenomena 
might reflect the transfer of information from distributed 
brain networks, which operate at the timescales of typical 
behavioral processes, to the faster localized cortical 
processing units, which perform the actual computation and 
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synaptic transmission of information [2]. In humans, PAC 
has been detected in regions such as the hippocampus [3], the 
basal ganglia [4] and the neocortex [5], and has been linked 
to memory maintenance [3], decision making [6], reward 
processing [4], and visuomotor learning [7], among other 
cognitive tasks.  

In this study, our goal was to investigate task-modulated 
changes in local PAC between low-frequency phase and 
high-frequency amplitude of cortical activity across the brain 
using magnetoencephalography (MEG) signals acquired 
during a visuomotor (VM) control experiment. In particular, 
we focused on the phase of the delta frequency band (2-5 Hz) 
and the amplitude of the high-gamma frequency band (60-90 
Hz). The motivation for this stems from observations of an 
increase in cortical power at these frequency bands around 
the contralateral motor cortex during a visuomotor task [8], 
suggesting a possible functional role for cross-frequency 
interaction in these bands.  

We converted MEG measurements into estimated current 
densities with a linear minimum-norm inverse solution, and 
obtained their delta phase and high-gamma amplitude 
representations by means of band-pass filtering followed by 
Hilbert transforms. As there are several methods available to 
estimate cross-frequency PAC, we compared the 
performance of five different techniques using an ROC 
analysis and simulated cross-frequency coupling between 
synthetic cortical time series. Once we identified the most 
robust PAC modulation detection method, we analyzed real 
multi-subject MEG data, looking for PAC modulations 
between the VM task and rest condition. Additionally, we 
also examined the putative modulations of PAC between the 
early phase and late phase of the VM experiment to test for a 
putative role of PAC in visuomotor adaptation. 

II. METHODS 

A. Phase-Amplitude Coupling 
Let us consider a time series x(t) and narrowband signals 

xL(t) and xH(t), which are obtained by band-pass filtering x(t) 
at low- and high-frequency bands BL and BH, respectively. 
There is phase-amplitude coupling between BL and BH for 
this time series if the amplitude of xH(t), which we call aH(t), 
and the phase of xL(t), which we call φL(t), are correlated. We 
can obtain aH(t) and φL(t) by applying the Hilbert transform to 
the narrowband signals xH(t) and xL(t), respectively. In this 
work, we used Kaiser windowing and filtering in both 
forward and reverse directions, to avoid phase distortion.  

A number of methods to estimate the degree of coupling 
between aH(t) and φL(t) has been proposed. The PAC 
methods we analyzed are presented in table I (see [9, 10] and 
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references therein). Although there is evidence that KLD has 
the best performance under a variety of signal conditions, not 
only in the detecting but also in the quantifying of the amount 
of PAC [9], no method has yet been chosen as the gold 
standard for detection of task-based changes in PAC. 

 

B. Simulated Data 
To find which PAC implementation among those 

described above (see Table 1) provides the most accurate and 
robust detection of task-based changes in PAC, we use an 
ROC (receiver operating characteristic) analysis. This 
analysis is based on creating several realizations of the 
synthetic time series y(t), according to the expression: 

y(t) = sin(2πfLt) + [p(t) × sin(2πfHt)] + n(t), (1) 

where fL = 3 Hz, fH = 70 Hz, n(t) is zero-mean Gaussian noise 
with variance σ2, and p(t) is given by 

p(t) = 0.5[(1−χ)sin(2πfLt)+1+χ], (2) 

thus creating the coupling between sin(2πfLt) and sin(2πfHt) 
[9]. The parameter χ ∈ [0, 1] controls the degree of coupling: 
maximum coupling is obtained for χ = 0, while χ = 1 
represents no coupling at all.   

We create 100 datasets, divided in two 50-dataset groups, 
each dataset consisting of 100 realizations of y(t). In the 
datasets of the first group, the first 50 realizations of y(t) have 
coupling (χ < 1), while the last 50 realizations have no 
coupling (χ = 1); in the datasets of the second group, χ = 1 
for all realizations. With one of the presented methods, and at 
each dataset, we obtain from each realization an estimate of 
the coupling between the delta and high-gamma bands, and 
then perform a t-test on the 100 computed PAC estimates to 
test for differences between the first 50 realizations and the 
last 50; we obtain p-values associated with these tests by 
means of resampling methods, in which surrogate PAC 
estimates were computed by randomly reordering the 
realizations [11]. This gives us 50 p-values for each group: 

the p-values of the first group are used to compute the true 
positive fraction (TPF) for a given confidence level, while 

 

 

 

 
Figure 1. Values of the area under the ROC curve computed from the 
100 datasets of simulated signals and with the six PAC methods 
presented above, for varying parameters of χ, σ, the period of y(t), and 
the sampling frequency of the signal. 

 

TABLE I.  METHODS FOR ESTIMATION OF PAC 

Method Mathematical expression 
Mean vector length 
(MVL) M1(t) = |Σt {aH(t) × exp[jφL(t)]}| 
Normalized MVL 
(MVLN) M2(t) = M1(t) / Σt |aH(t)|2  
General linear model 
(GLM)a M3(t) = [SS(aH)−SS(e)]/SS(aH) 
Phase synchrony  
(PS) b M4(t) = exp{j[φH(t)−φL(t)]} 
Kullback-Leibler 
divergence (KLD) c M5(t) = Σn f(n) × log{f(n)/g(n)} 

Heights ratio (HR) d M6(t) = (fmax − fmin)/ fmax 
a. The linear model is represented by the expression aH = Xβ + e, where vector aH 

contains aH(t) for all t, X is a 2-column matrix where each row contains the real 
and imaginary components of exp[jφL(t)], β is the vector of regression 

coefficients, and e is the error vector. SS means sum of squares. 

b. φH(t) is found by applying the Hilbert transform on aH(t) and taking the phase of 
the resulting signal. 

c. f(n) is the probability density of aH(t) as a function of φL(t), and g(n) is the 
probability density of the uniform distribution. 

d.  fmax − fmin are, respectively, the maximum and minimum values of f(n).        

 



  

with the p-values of the second group we get the false 
positive fraction (FPF). By varying the confidence level, we 
find our ROC curve for these datasets. 

In fig. 1 we present the results of the ROC analysis, for 
different values of χ, σ, the period of y(t), and the sampling 
frequency of the signal. We tested the PAC methods 
mentioned above: MVL, MVLN, GLM, PS, KLD, and HR. 
In these plots, the y-axis represents the area under the ROC 
curve (AUC), which varies between 0 and 1, 1 indicating 
perfect discrimination performance. We can see from these 
graphs that, except for non-normalized MVL, all methods 
had good performance under non-extreme noise conditions, 
and that the KLD method appears to be slightly better than 
the others. Based on this, we chose KLD to perform the 
subsequent analysis on real MEG data. Basically, this method 
compares the probability distribution of aH(t) and φL(t) 
(obtained empirically from the time series) with the uniform 
distribution; the greater the disparity between these two 
distributions, the stronger the PAC.     

C.  Visuomotor Data 
After finding the best method to detect task-based 

changes in PAC, we proceeded to the analysis of MEG data 
acquired during a visuomotor coordination study [12]. 
Signals were recorded from 15 subjects while they were 
under two conditions: the visuomotor task (VM), where they 
watched a randomly rotating cube on a screen in front of 
them and had to prevent its rotation by operating a trackball 
with their right hand; and rest (R), where they looked at a still 
cube without performing any activity. Data were acquired for 
several repetitions of the experiment for both conditions, and 
the trial duration was 1s. The experimental setting is shown 
in fig. 2. 

The MEG recordings from all subjects were converted 
into current density maps on the cortical surface by means of 
a minimum-norm inverse solution [13, 12], combined with a 
co-registration procedure that mapped the anatomical 
information from all subjects onto a common brain atlas [12]. 
We then applied band-pass filters followed by Hilbert 
transforms to the current density time series, to obtain the 
delta phases and high-gamma amplitudes at each spatial 
location. Finally, we estimated PAC between delta and high-
gamma with the KLD approach. 

For a given subject, this procedure gave us, at each brain 
location, several PAC estimates for VM and R (one for each 
repetition of the experiment), which we call qVM(s,i,j) and 
qR(s,i,j), respectively (s is the index for subject, i is the index 
for location, and j is the index for repetition). We used the 
qVM(s,i,j) and qR(s,i,j) to run a multi-subject statistical 
analysis [14], which consisted of the following steps: first, 
we calculated the mean change in PAC at the subject level, 
according to the equation: 

r(s,i) = Ej{ qVM(s,i,j) } − Ej{ qR(s,i,j) }, (3) 

where Ej{} is the mean (over repetitions) of all PAC 
estimates for the given location and subject. Afterwards, the 
mean PAC changes served as inputs to a group-level general 
linear model:  

r(s,i) = u(i) + ε(s,i),  (4) 

where u(i) is the group regression parameter and ε(s,i) is an 
error term. The significance of each u(i) was assessed with t-
tests, but since the null distribution was not known, we found 
it empirically with resampling methods: surrogate versions of 
the estimated u(i) were calculated by randomly selecting 
some of the r(s,i) and changing their signs. To take into 
account the multiple comparison problem, we implemented a 
procedure that controls the false discovery rate [15].    

III. RESULTS 

Fig. 3 presents the results of the comparison across 
subjects between delta-high-gamma PAC during the VM task 
and during rest. These maps were computed from data that 
consisted of 185 VM trials and 185 rest trials from each 
subject. We can see a significant increase in PAC around the 
occipital/parietal lobe of both hemispheres and the 
cerebellum, extending into both medial surfaces. 
Interestingly, this change in PAC is not correlated with the 
variations in high-gamma amplitude, as fig. 4 demonstrates 

 

 

Figure 2. Experimental setting for the MEG data acquisition. During 
the VM condition, the subject watches a cube that rotates randomly, 
and must prevent its rotation (and keep the blue face of the cube on the 
screen) with the trackball under his right hand. During the R condition, 
the cube does not move, and the subject does not operate the trackball. 

 

 
 
Figure 3. Posterior, left medial, and right medial views of  brain regions 
with significant increase of VM PAC when compared to rest, at the 
population level. The color code represents the mean difference (across 
subjects) of PAC between VM and R. 

 



  

that if we run the same multi-subject statistical analysis as 
described above, but use high-gamma signal power instead of 
delta-high-gamma PAC as inputs, we only find strong 
increases around the left motor cortex (contralateral to the 
moving right hand). Even if we perform more lenient 
statistical tests by not correcting for multiple comparisons, no 
significant high-gamma power changes in the occipital cortex 
or in the cerebellum are found. 

Next, we compared PAC during the VM task between 
trials at the beginning of the experiment and trials at the end 
in order to monitor possible PAC modulations across the time 
course of the experiment. The resulting brain maps (Fig. 5) 
reveal small regions in the superior parietal lobule, extending 
into the medial surfaces of both hemispheres, where PAC is 
higher at the end of the experiment than at beginning. This 
increase might be the consequence of a task learning or 
adaptation process taking place in the brain over the course of 
the continuous visuomotor tracking experiment.  

IV. CONCLUSION 
In this study we investigated task-related modulations of 

cross-frequency coupling between delta and high-gamma 
rhythms in the brain, using MEG data acquired during a 
visuomotor task. We found changes in PAC between delta 
phase and high-gamma amplitude to be enhanced in the VM 
condition compared to the rest condition in the parietal and 
in the visual cortex. Although primary motor areas did not 
show an increase in delta/high-gamma PAC, further 
investigations across other frequencies, and using cross-
regional coupling, will be needed to fully address the 
question of whether PAC mechanisms also operate in the 
motor cortex. We also intend to continue studying in more 
detail the link between PAC and visuomotor learning. 
Finally, in order to single out the specific role of PAC in VM 
control and adaptation, a topic for further analysis is a 
comparison between visuomotor and other experimental 
conditions, such as purely visual, purely motor, or 
uncoordinated visual-motor behavior. 
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Figure 5. Left and right medial views of brain regions where there is a 
significant increase in PAC at the later trials when compared to earlier 
ones. 

 

 
Figure 4. Posterior and superior views of brain regions where there is a 
significant group-level increase in high-gamma (60-90 Hz) signal power 
during VM compared to rest. Green locations are significant only if no 
correction for multiple comparisons is performed, while red locations are 
significant if false discovery rate (FDR) control is applied.   

 


